Note

This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.

5.2.2. sammba.data_fetchers.fetch_zurich_anesthesiant

sammba.data_fetchers.fetch_zurich_anesthesiant(subjects=range(0, 30), url=None, data_dir=None, resume=True, verbose=1)

Download and loads the ETH-Zurich anesthesiant dataset.

Parameters

subjects : sequence of int or None, optional

ids of subjects to load, default to loading all subjects.

data_dir: string, optional

Path of the data directory. Used to force data storage in a specified location. Default: None

resume: bool, optional (default True)

If true, try resuming download if possible.

verbose: int, optional (default 0)

Defines the level of verbosity of the output.

Returns

data : sklearn.datasets.base.Bunch

Dictionary-like object, the interest attributes are: - ‘func’: string list. Paths to functional images. - ‘anesthesiant’: string list. Information on used anesthesiant.

Notes

This dataset is composed of 30 male mice with different anesthesia protocols.

References

Download

https://central.xnat.org

Reference

Optimization of anesthesia protocol for resting-state fMRI in mice based on differential effects of anesthetics on functional connectivity patterns. NeuroImage 102 (2014): 838-847. J. Grandjean and A. Schroeter and I. Batata and M. Rudin.