Note

This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.

5.2.1. sammba.data_fetchers.fetch_zurich_test_retest

sammba.data_fetchers.fetch_zurich_test_retest(subjects=range(0, 15), sessions=[1], data_dir=None, url=None, resume=True, verbose=1, correct_headers=False)

Download and loads the ETH-Zurich test-retest dataset.

Parameters

subjects : sequence of int or None, optional

ids of subjects to load, default to loading all subjects.

sessions : iterable of int, optional

The sessions to load. Load only the first session by default.

data_dir : string, optional

Path of the data directory. Used to force data storage in a specified location. Default: None

resume : bool, optional (default True)

If true, try resuming download if possible.

verbose : int, optional (default 0)

Defines the level of verbosity of the output.

Returns

data : sklearn.datasets.base.Bunch

Dictionary-like object, the interest attributes are :

  • ‘func’: string list. Paths to functional images.

  • ‘anat’: string list. Paths to anatomic images.

  • ‘session’: numpy array. List of ids corresponding to images sessions.

Notes

This dataset is composed of 2 sessions of 15 male mice. For each mice, 2 resting-state scans of continuous EPI functional volumes were collected, both with their anatomical scan. Session 2 was collected 15-20 days after Session 1.

References

Download

https://central.xnat.org

Reference

Mapping the Mouse Brain with Rs-fMRI: An Optimized Pipeline for Functional Network Identification NeuroImage 123 (2015): 11-21. V. Zerbi, J. Grandjean, M. Rudin, and N. Wenderoth.