Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the user guide for the big picture.
5.3.7. sammba.registration.Coregistrator¶
-
class
sammba.registration.
Coregistrator
(brain_volume=None, output_dir=None, caching=False, verbose=True, use_rats_tool=True, clipping_fraction=0.2)¶ Class for registering anatomical image to perfusion/functional images from one animal in native space.
- Parameters
brain_volume : int or None, optional
Volume of the brain in mm3 used for brain extraction. Typically 400 for mouse and 1650 for rat. Used only if prior rigid body registration is needed.
output_dir : str or None, optional
Path to the output directory. If None, current directory is used.
caching : bool, optional
If True, caching is used for all the registration steps.
verbose : int, optional
Verbosity level. Note that caching implies some verbosity in any case.
use_rats_tool : bool, optional
If True, brain mask is computed using RATS Mathematical Morphology. Otherwise, a histogram-based brain segmentation is used.
clipping_fraction : float or None, optional
Clip level fraction is passed to nipype.interfaces.afni.Unifize, to tune the bias correction step done prior to brain mask segmentation. Only values between 0.1 and 0.9 are accepted. Smaller fractions tend to make the mask larger. If None, no unifization is done for brain mask computation.
-
__init__
(brain_volume=None, output_dir=None, caching=False, verbose=True, use_rats_tool=True, clipping_fraction=0.2)¶ Initialize self. See help(type(self)) for accurate signature.
-
fit_modality
(in_file, modality, slice_timing=True, t_r=None, prior_rigid_body_registration=None, reorient_only=False, brain_mask_file=None)¶ Prepare and perform coregistration.
- Parameters
in_file : str
Path to the raw modality image.
modality : one of {‘perf’, ‘func’}
Name of the MRI modality.
slice_timing : bool, optional
If True, slice timing correction is performed
t_r : float, optional
Repetition time, only needed for slice timing correction.
prior_rigid_body_registration : bool, optional
If True, a rigid-body registration of the anat to the modality is performed prior to the warp. Useful if the images headers have missing/wrong information. NOTE: prior_rigid_body_registration is deprecated from 0.1 and will be removed in next release. Use reorient_only instead.
reorient_only : bool, optional
If True, the rigid-body registration of the anat to the func is not performed and only reorientation is done.
- Returns
the coregistrator itself
-
fit_transform
(X, y=None, **fit_params)¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters
X : numpy array of shape [n_samples, n_features]
Training set.
y : numpy array of shape [n_samples]
Target values.
**fit_params : dict
Additional fit parameters.
- Returns
X_new : numpy array of shape [n_samples, n_features_new]
Transformed array.
-
get_params
(deep=True)¶ Get parameters for this estimator.
- Parameters
deep : bool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params : mapping of string to any
Parameter names mapped to their values.
-
segment
(in_file)¶ Bias field correction and brain extraction
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
**params : dict
Estimator parameters.
- Returns
self : object
Estimator instance.
-
transform_modality_like
(apply_to_file, modality)¶ Applies modality coregristration to a file in the modality space.