Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the user guide for the big picture.
5.3.6. sammba.registration.TemplateRegistrator¶
-
class
sammba.registration.
TemplateRegistrator
(template, brain_volume, template_brain_mask=None, dilated_template_mask=None, output_dir=None, caching=False, verbose=True, use_rats_tool=True, clipping_fraction=0.2, convergence=0.005, registration_kind='nonlinear')¶ Class for registering anatomical and possibly other modality images from one animal to a given head template.
- Parameters
template : str
Path to the head template image.
brain_volume : int
Volume of the brain in mm3 used for brain extraction. Typically 400 for mouse and 1650 for rat.
template_brain_mask : str or None, optional
Path to the template brain mask image, compliant with the given head template.
dilated_template_mask : str or None, optional
Path to a dilated head mask, compliant with the given head template. If None, the mask is set to the non-background voxels of the head template after one dilation.
output_dir : str, optional
Path to the output directory. If not specified, current directory is used.
caching : bool, optional
If True, caching is used for all the registration steps.
verbose : int, optional
Verbosity level. Note that caching implies some verbosity in any case.
use_rats_tool : bool, optional
If True, brain mask is computed using RATS Mathematical Morphology. Otherwise, a histogram-based brain segmentation is used.
clipping_fraction : float or None, optional
Clip level fraction is passed to nipype.interfaces.afni.Unifize, to tune the bias correction step done prior to brain mask segmentation. Only values between 0.1 and 0.9 are accepted. Smaller fractions tend to make the mask larger. If None, no unifization is done for brain mask computation.
convergence : float, optional
Convergence limit, passed to nipype.interfaces.afni.Allineate
registration_kind : one of {‘rigid’, ‘affine’, ‘nonlinear’}, optional
The allowed transform kind from the anatomical image to the template.
Attributes
template_brain_
(str) Path to the brain extracted file from the template image
anat_brain_
(str) Path to the brain extracted file from the anatomical image
-
__init__
(template, brain_volume, template_brain_mask=None, dilated_template_mask=None, output_dir=None, caching=False, verbose=True, use_rats_tool=True, clipping_fraction=0.2, convergence=0.005, registration_kind='nonlinear')¶ Initialize self. See help(type(self)) for accurate signature.
-
fit_anat
(anat_file, brain_mask_file=None)¶ Estimates registration from anatomical to template space.
-
fit_modality
(in_file, modality, slice_timing=True, t_r=None, prior_rigid_body_registration=None, reorient_only=False, voxel_size=None)¶ Estimates registration from the space of a given modality to the template space.
- Parameters
in_file : str
Path to the modality image. M0 file is expected for perfusion.
modality : one of {‘func’, ‘perf’}
Name of the modality.
slice_timing : bool, optional
If True, slice timing correction is performed
t_r : float, optional
Repetition time, only needed for slice timing correction.
prior_rigid_body_registration : bool, optional
If True, a rigid-body registration of the anat to the modality is performed prior to the warp. Useful if the images headers have missing/wrong information. NOTE: prior_rigid_body_registration is deprecated from 0.1 and will be removed in next release. Use reorient_only instead.
reorient_only : bool, optional
If True, the rigid-body registration of the anat to the func is not performed and only reorientation is done.
-
fit_transform
(X, y=None, **fit_params)¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters
X : numpy array of shape [n_samples, n_features]
Training set.
y : numpy array of shape [n_samples]
Target values.
**fit_params : dict
Additional fit parameters.
- Returns
X_new : numpy array of shape [n_samples, n_features_new]
Transformed array.
-
get_params
(deep=True)¶ Get parameters for this estimator.
- Parameters
deep : bool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params : mapping of string to any
Parameter names mapped to their values.
-
inverse_transform_towards_modality
(in_file, modality, interpolation='wsinc5')¶ Transforms the given file from template space to modality space.
- Parameters
in_file : str
Path to the file in the same space as the modality image.
interpolation : one of {‘nearestneighbour’, ‘trilinear’, ‘tricubic’,
‘triquintic’, ‘wsinc5’}, optional
The interpolation method used for the transformed file.
voxel_size : 3-tuple or None, optional
The target voxels size. If None, the final voxels size will match the template.
- Returns
transformed_file : str
Path to the transformed file, in template space.
-
segment
(in_file)¶ Bias field correction and brain extraction
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
**params : dict
Estimator parameters.
- Returns
self : object
Estimator instance.
-
transform_anat_like
(in_file, interpolation='wsinc5')¶ Transforms the given in_file from anatomical space to template space.
- Parameters
in_file : str
Path to the file in the same space as the anatomical image.
interpolation : one of {‘nearestneighbour’, ‘trilinear’, ‘tricubic’,
‘triquintic’, ‘wsinc5’}, optional
The interpolation method used for the transformed file.
- Returns
transformed_file : str
Path to the transformed file, in template space.
-
transform_modality_like
(in_file, modality, interpolation='wsinc5', voxel_size=None)¶ Transforms the given file from the space of the given modality to the template space. If the given modality has been corrected for EPI distorsions, the same correction is applied.
- Parameters
in_file : str
Path to the file in the same space as the modality image.
modality : one of {‘func’, ‘perf’}
Name of the modality.
interpolation : one of {‘nearestneighbour’, ‘trilinear’, ‘tricubic’,
‘triquintic’, ‘wsinc5’}, optional
The interpolation method used for the transformed file.
voxel_size : 3-tuple or None, optional
The target voxels size. If None, the final voxels size will match the template.
- Returns
transformed_file : str
Path to the transformed file, in template space.