Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the user guide for the big picture.
5.3.2. sammba.registration.anats_to_template¶
-
sammba.registration.
anats_to_template
(anat_filenames, head_template_filename, write_dir, brain_volume, use_rats_tool=True, registration_kind='nonlinear', brain_template_filename=None, dilated_head_mask_filename=None, convergence=0.005, maxlev=None, caching=False, verbose=1, unifize_kwargs=None, brain_masking_unifize_kwargs=None)¶ DEPRECATED: Function ‘anats_to_template’ has been replaced by function ‘anat_to_template’ and will be removed in future release.
Registers raw anatomical images to a given template.
- Parameters
anat_filenames : list of str
Paths to the anatomical images.
- head_template_filenamestr
Path to the head template.
- write_dirstr
Path to an existant directory to save output files to.
- brain_volumeint
Volume of the brain in mm3 used for brain extraction. Typically 400 for mouse and 1800 for rat.
- use_rats_toolbool, optional
If True, brain mask is computed using RATS Mathematical Morphology. Otherwise, a histogram-based brain segmentation is used.
- registration_kindone of {‘rigid’, ‘affine’, ‘nonlinear’}, optional
The allowed transform kind.
- brain_template_filenamestr, optional
Path to a brain template. Note that this must coincide with the brain from the given head template. If None, the brain is extracted from the template with RATS.
- dilated_head_mask_filenamestr, optional
Path to a dilated head mask. Note that this must be compliant with the the given head template. If None, the mask is set to the non-background voxels of the head template after one dilation.
- cachingbool, optional
If True, caching is used for all the registration steps.
- convergencefloat, optional
Convergence limit, passed to nipype.interfaces.afni.Allineate
- maxlevint or None, optional
If not None, maximal level for the nonlinear warping. Passed to nipype.interfaces.afni.Qwarp. Lower implies faster but possibly lower precision.
- verboseint, optional
Verbosity level. Note that caching implies some verbosity in any case.
- unifize_kwargsdict, optional
Is passed to nipype.interfaces.afni.Unifize, to control bias correction of the template.
- brain_masking_unifize_kwargsdict, optional
Is passed to nipype.interfaces.afni.Unifize, to tune the seperate bias correction step done prior to brain extraction.
- Returns
data : sklearn.datasets.base.Bunch
Dictionary-like object, the interest attributes are :
- registeredlist of str.
Paths to registered images. Note that they have undergone a bias correction step before.
- pre_transformslist of str.
Paths to the affine transforms from the raw images to the images allineated to the template.
- transformslist of str.
Paths to the transforms from the allineated images to the final registered images.
Notes
If use_rats_tool is turned on, RATS tool is used for brain extraction and has to be cited. For more information, see RATS